Coexistence of multiple propagating wave-fronts in a regulated enzyme reaction model: link with birhythmicity and multi-threshold excitability.

نویسندگان

  • C Pérez-Iratxeta
  • J Halloy
  • F Morán
  • J L Martiel
  • A Goldbeter
چکیده

We analyze the spatial propagation of wave-fronts in a biochemical model for a product-activated enzyme reaction with non-linear recycling of product into substrate. This model was previously studied as a prototype for the coexistence of two distinct types of periodic oscillations (birhythmicity). The system is initially in a stable steady state characterized by the property of multi-threshold excitability, by which it is capable of amplifying in a pulsatory manner perturbations exceeding two distinct thresholds. In such conditions, when the effect of diffusion is taken into account, two distinct wave-fronts are shown to propagate in space, with distinct amplitudes and velocities, for the same set of parameter values, depending on the magnitude of the initial perturbation. Such a multiplicity of propagating wave-fronts represents a new type of coexistence of multiple modes of dynamic behavior, besides the coexistence involving, under spatially homogeneous conditions, multiple steady states, multiple periodic regimes, or a combination of steady and periodic regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Threshold F-policy and N-policy for multi-component machining system with warm standbys

The integration of marketing and demand with logistics and inventories (supply side of companies) may cause multiple improvements; it can revolutionize the management of the revenue of rental companies, hotels, and airlines. In this paper, we develop a multi-objective pricing-inventory model for a retailer. Maximizing the retailer's profit and the service level are the objectives, and shorta...

متن کامل

Excitability in a Model with a Saddle-Node Homoclinic Bifurcation

In order to describe excitable reaction-diffusion systems, we derive a two-dimensional model with a Hopf and a semilocal saddle-node homoclinic bifurcation. This model gives the theoretical framework for the analysis of the saddle-node homoclinic bifurcation as observed in chemical experiments, and for the concepts of excitability and excitability threshold. We show that if diffusion drives an ...

متن کامل

Steep. Short-Crested Waves and Related Phenomena

Steep, short-crested waves, as well as a large variety of three-dimensional propagating wave patterns have been created in laboratory, utilizing a plunging half-cone. Monochromatic waves, over a range of frequencies and amplitudes through breaking and including soliton wave groups near resonance, have been observed and studied in a small wave flume. This monochromatic wavemaker creates complex ...

متن کامل

Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in drosophila

In Drosophila, circadian oscillations in the levels of two proteins, PER and TIM, result from the negative feedback exerted by a PER-TIM complex on the expression of the per and tim genes which code for these two proteins. On the basis of these experimental observations, we have recently proposed a theoretical model for circadian oscillations of the PER and TIM proteins in Drosophila. Here we s...

متن کامل

Feedback stabilization of unstable propagating waves.

Propagating wave segments are stabilized to a constant size and shape by applying negative feedback from the measured wave area to the excitability of the medium. The locus of steady-state wave size as a function of excitability defines the perturbation threshold for the initiation of spiral waves. This locus also defines the excitability boundary for spiral wave behavior in active media.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical chemistry

دوره 74 3  شماره 

صفحات  -

تاریخ انتشار 1998